Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38393208

RESUMO

(1) Background: Monitoring effluent in water treatment plants has a key role in identifying potential pollutants that might be released into the environment. A non-target analysis approach can be used for identifying unknown substances and source-specific multipollutant signatures. (2) Methods: Urban and industrial wastewater effluent were analyzed by HPLC-HRMS for non-target analysis. The anomalous infiltration of industrial wastewater into urban wastewater was investigated by analyzing the mass spectra data of "unknown common" compounds using principal component analysis (PCA) and the Self-Organizing Map (SOM) AI tool. The outcomes of the models were compared. (3) Results: The outlier detection was more straightforward in the SOM model than in the PCA one. The differences among the samples could not be completely perceived in the PCA model. Moreover, since PCA involves the calculation of new variables based on the original experimental ones, it is not possible to reconstruct a chromatogram that displays the recurring patterns in the urban WTP samples. This can be achieved using the SOM outcomes. (4) Conclusions: When comparing a large number of samples, the SOM AI tool is highly efficient in terms of calculation, visualization, and identifying outliers. Interpreting PCA visualization and outlier detection becomes challenging when dealing with a large sample size.

2.
Analyst ; 149(3): 885-894, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38179644

RESUMO

The precise identification and differentiation of peri-implant diseases, without the need for intrusive procedures, is crucial for the successful clinical treatment and overall durability of dental implants. This work introduces a novel approach that combines surface-enhanced Raman scattering (SERS) spectroscopy with advanced chemometrics to analyse peri-implant crevicular fluid (PICF) samples. The primary purpose is to offer an unbiased evaluation of implant health. A detailed investigation was performed on PICF samples obtained from a cohort of patients exhibiting different levels of peri-implant health, including those with healthy implants, implants impacted by peri-implantitis, and implants with peri-implant mucositis. The obtained SERS spectra were analysed using canonical-powered partial least squares (CPPLS) to identify unique chemical characteristics associated with each inflammatory state. Significantly, our research findings unveil the presence of a common inflammatory SERS spectral pattern in cases of peri-implantitis and peri-implant mucositis. Furthermore, the SERS-based scores obtained from CPPLS were combined with established clinical scores and subjected to a linear discriminant analysis (LDA) classifier. Repeated double cross-validation was used to validate the method's capacity to discriminate different implant conditions. The integrated approach showcased high sensitivity and specificity and an overall balanced accuracy of 92%, demonstrating its potential to serve as a non-invasive diagnostic tool for real-time implant monitoring and early detection of inflammatory conditions.


Assuntos
Mucosite , Peri-Implantite , Humanos , Peri-Implantite/diagnóstico , Análise Espectral Raman
3.
Chem Biol Interact ; 387: 110792, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37944627

RESUMO

Thiopurine drugs are immunomodulatory antimetabolites relevant for pediatric patients characterized by dose-dependent adverse effects such as myelosuppression and hepatotoxicity, often related to inter-individual differences, involving the activity of important enzymes at the basis of their biotransformation, such as thiopurine S-methyltransferase (TPMT). Surface Enhanced Raman Scattering (SERS) spectroscopy is emerging as a bioanalytical tool and represents a valid alternative in terms of affordable costs, shorter analysis time and easier sample preparation in comparison to the most employed methods for pharmacokinetic analysis of drugs. The aim of this study is to investigate mercaptopurine and thioguanine pharmacokinetics by SERS in cell lysates of a B-lymphoblastoid cell line (NALM-6), that did (TPMT*1) or did not (MOCK) overexpress the wild-type form of TPMT as an in vitro cellular lymphocyte model to discriminate between cells with different levels of TPMT activity on the base of the amount of thioguanosine nucleotides (TGN) metabolites formed. SERS analysis of the cell lysates was carried out using SERS substrates constituted by Ag nanoparticles deposited on paper and parallel samples were used for quantification of thiopurine nucleotides with liquid chromatography-tandem mass spectrometry (LC-MS/MS). A direct SERS detection method has been set up that could be a tool to study thiopurine drug pharmacokinetics in in vitro cellular models to qualitatively discriminate between cells that do and do not overexpress the TPMT enzyme, as an alternative to other more laborious techniques. Results underlined decreased levels of TGN and increased levels of methylated metabolites when TPMT was overexpressed, both after mercaptopurine and thioguanine treatments. A strong positive correlation (Spearman's rank correlation coefficient rho = 0.96) exists between absolute quantification of TGMP (pmol/1 x 106 cells), obtained by LC-MS/MS, and SERS signal (intensity of TGN at 915 cm-1). In future studies, we aim to apply this method to investigate TPMT activity in pediatric patients' leukocytes.


Assuntos
Leucemia , Nanopartículas Metálicas , Humanos , Criança , Mercaptopurina/metabolismo , Tioguanina/metabolismo , Cromatografia Líquida , Prata , Espectrometria de Massas em Tandem , Metiltransferases , Nucleotídeos , Análise Espectral
4.
Biosensors (Basel) ; 13(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37504142

RESUMO

The need for providing rapid and, possibly, on-the-spot analytical results in the case of intoxication has prompted researchers to develop rapid, sensitive, and cost-effective methods and analytical devices suitable for use in nonspecialized laboratories and at the point of need (PON). In recent years, the technology of paper-based microfluidic analytical devices (µPADs) has undergone rapid development and now provides a feasible, low-cost alternative to traditional rapid tests for detecting harmful compounds. In fact, µPADs have been developed to detect toxic molecules (arsenic, cyanide, ethanol, and nitrite), drugs, and drugs of abuse (benzodiazepines, cathinones, cocaine, fentanyl, ketamine, MDMA, morphine, synthetic cannabinoids, tetrahydrocannabinol, and xylazine), and also psychoactive substances used for drug-facilitated crimes (flunitrazepam, gamma-hydroxybutyric acid (GHB), ketamine, metamizole, midazolam, and scopolamine). The present report critically evaluates the recent developments in paper-based devices, particularly in detection methods, and how these new analytical tools have been tested in forensic and clinical toxicology, also including future perspectives on their application, such as multisensing paper-based devices, microfluidic paper-based separation, and wearable paper-based sensors.


Assuntos
Cocaína , Ketamina , Microfluídica , Toxicologia Forense , Dispositivos Lab-On-A-Chip
7.
Anal Bioanal Chem ; 414(11): 3517-3527, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35258650

RESUMO

Surface-enhanced Raman scattering (SERS) spectra of faecal samples can be obtained by adding AuNP to their methanol extracts according to the reported protocol, and display bands that are due to bilirubin-like species but also to xanthine and hypoxanthine, two metabolic products secreted by gut bacteria. A total of 27 faecal samples from three different groups, i.e. coeliac patients (n = 9), coeliac patients on gluten-free diet (n = 10) and a control group (n = 8), were characterized with both SERS spectroscopy and 16S rRNA sequencing analysis. Significant differences are present between SERS spectra of coeliac patients and those on gluten-free diet, with a marked increase in the relative intensity of both xanthine and hypoxanthine for the latter. Interestingly, these differences do not correlate with bacterial composition as derived from 16S rRNA sequencing.


Assuntos
Dieta Livre de Glúten , Análise Espectral Raman , Bactérias/genética , Fezes/química , Humanos , Hipoxantina/análise , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Análise Espectral Raman/métodos , Xantina
8.
FEBS Lett ; 596(10): 1348-1355, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35152417

RESUMO

Label-free surface-enhanced Raman scattering (SERS) has recently gained attention in the field of liquid biopsy as a rapid and relatively inexpensive technique that could significantly ease clinical diagnosis and prognosis by investigating a biofluid sample with a laser. Indeed, SERS spectra provide information about a set of metabolites present in the analysed biofluid, thereby offering biochemical insight into specific health conditions. Ergothioneine plays a key role since it is one of the few metabolites in biofluids that are detectable by label-free SERS. In the past decade, many studies characterizing biofluids or other biological samples have unknowingly linked this amino acid with crucial metabolic processes, including inflammation, in a plethora of diseases. However, since the SERS spectrum of ergothioneine has been reported only recently, most past studies inadvertently assigned what are now recognized as the spectral features of this compound to other molecules. The purpose of the present review is to summarize and re-evaluate these studies in the light of the recent SERS characterization of ergothioneine so as to better recognize the role of ergothioneine in many clinical conditions.


Assuntos
Ergotioneína , Análise Espectral Raman , Estudos Retrospectivos , Análise Espectral Raman/métodos
9.
Biosensors (Basel) ; 11(11)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34821683

RESUMO

Label-free SERS is a powerful bio-analytical technique in which molecular fingerprinting is combined with localized surface plasmons (LSPs) on metal surfaces to achieve high sensitivity. Silver and gold colloids are among the most common nanostructured substrates used in SERS, but since protein-rich samples such as serum or plasma can hinder the SERS effect due to protein-substrate interactions, they often require a deproteinization step. Moreover, SERS methods based on metal colloids often suffer from a poor reproducibility. Here, we propose a paper-based SERS sampling method in which unprocessed human serum samples are first soaked on paper strips (0.4 × 2 cm2), and then mixed with colloidal silver nanoparticles by centrifugation to obtain a Centrifugal Silver Plasmonic Paper (CSPP). The CSPP methodology has the potential to become a promising tool in bioanalytical SERS applications: it uses common colloidal substrates but without the need for sample deproteinization, while having a good reproducibility both in terms of overall spectral shape (r > 0.96) and absolute intensity (RSD < 10%). Moreover, this methodology allows SERS analysis more than one month after serum collection on the paper strip, facilitating storage and handling of clinical samples (including shipping from clinical sites to labs).


Assuntos
Nanopartículas Metálicas , Soro/química , Prata , Análise Espectral Raman , Coloides , Humanos , Reprodutibilidade dos Testes
11.
Analyst ; 146(4): 1464-1471, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33427826

RESUMO

Gingival crevicular fluid (GCF) is an interesting biofluid reflecting the physiological and pathological states of a single dental element. Due to this unique feature, in recent years, metabolomic analysis of GCF has gained attention as a biometric tool for the diagnosis and therapy of periodontal disease. Traditional methods are, however, too slow, cumbersome and expensive for a health-care routine. Surface enhanced Raman scattering (SERS) can offer rapid and label-free detailed molecular fingerprints that can be used for biofluid analysis. Here we report the first SERS characterization of GCF using an easy and quick sample preparation. The dominant features in the SERS spectrum of GCF are ascribed to very few metabolites, in particular to uric acid, hypoxanthine, glutathione and ergothioneine. Additionally, we succeeded in differentiating between the SERS signal of GCF collected from healthy volunteers and the one collected from patients with periodontal disease.


Assuntos
Líquido do Sulco Gengival , Análise Espectral Raman , Glutationa , Humanos
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 246: 119024, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33049471

RESUMO

Intense SERS spectra of the natural amino acid ergothioneine (ERG) are obtained on different substrates upon 785 nm excitation. A characteristic spectral pattern with a distinctive intense band at 480-486 cm-1 is conserved when substrates of different type and characteristics are used. On the basis of available literature, we propose ERG is adsorbed on the metal surface in its thiolate form via the sulphur and heterocyclic nitrogen. The same spectral pattern is obtained in SERS spectra of filtered erythrocytes lysates, confirming the presence of ERG in those cells. The occurrence of ERG bands in label-free SERS spectra of serum and plasma reported in literature by different authors is discussed, highlighting the importance of this amino acid for the interpretation of SERS spectra of these biofluids.


Assuntos
Ergotioneína , Análise Espectral Raman , Ouro , Plasma , Soro
14.
Anal Chem ; 92(5): 4053-4064, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32045217

RESUMO

Surface-enhanced Raman scattering (SERS) is a powerful and sensitive technique for the detection of fingerprint signals of molecules and for the investigation of a series of surface chemical reactions. Many studies introduced quantitative applications of SERS in various fields, and several SERS methods have been implemented for each specific application, ranging in performance characteristics, analytes used, instruments, and analytical matrices. In general, very few methods have been validated according to international guidelines. As a consequence, the application of SERS in highly regulated environments is still considered risky, and the perception of a poorly reproducible and insufficiently robust analytical technique has persistently retarded its routine implementation. Collaborative trials are a type of interlaboratory study (ILS) frequently performed to ascertain the quality of a single analytical method. The idea of an ILS of quantification with SERS arose within the framework of Working Group 1 (WG1) of the EU COST Action BM1401 Raman4Clinics in an effort to overcome the problematic perception of quantitative SERS methods. Here, we report the first interlaboratory SERS study ever conducted, involving 15 laboratories and 44 researchers. In this study, we tried to define a methodology to assess the reproducibility and trueness of a quantitative SERS method and to compare different methods. In our opinion, this is a first important step toward a "standardization" process of SERS protocols, not proposed by a single laboratory but by a larger community.

15.
Talanta ; 203: 99-105, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31202356

RESUMO

In the present study, label-free SERS spectroscopy is applied as a useful analytical technique for white wine characterization. 180 samples of three white wines varieties from northeastern Italy, Sauvignon Blanc, Ribolla Gialla and Friulano, collected from three different Italian producers from 2016 vintage, have been analyzed using Ag citrate-reduced colloids and a portable Raman instrument with a 785 nm laser. A PCA of SERS spectra showed that discrimination between wines and wineries is possible. Main spectral differences are due to adenine, carboxylic acids and glutathione, with their ratio changing among different wine types and producers. A robust version of the Soft Independent Modelling of Class Analogy (SIMCA) method was used to model the class space of each wine and to perform the classification among the different categories, yielding overall efficiencies between 87 and 93%. These results are extremely encouraging and open the way to the application of this SERS protocol as a wine identification assay.

16.
Anal Chem ; 90(21): 12670-12677, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30350602

RESUMO

Therapeutic drug monitoring (TDM) for anticancer drug imatinib has been suggested as the best way to improve the treatment response and minimize the risk of adverse reactions in chronic myelogenous leukemia (CML) and gastrointestinal stromal tumor (GIST) patients. TDM of oncology treatments with standard analytical methods, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) is, however, complex and demanding. This paper proposes a new method for quantitation of imatinib in human plasma, based on surface enhanced raman spectroscopy (SERS) and multivariate calibration using partial least-squares regression (PLSR). The best PLSR model was obtained with three latent variables in the range from 123 to 5000 ng/mL of imatinib, providing a standard error of prediction (SEP) of 510 ng/mL. The method was validated in accordance with international guidelines, through the estimate of figures of merit, such as precision, accuracy, systematic error, analytical sensitivity, limits of detection, and quantitation. Moreover, the feasibility and clinical utility of this approach have also been verified using real plasma samples taken from deidentified patients. The results were in good agreement with a clinically validated LC-MS/MS method. The new SERS method presented in this preliminary work showed simplicity, short analysis time, good sensitivity, and could be considered a promising platform for TDM of imatinib treatment in a point-of-care setting.


Assuntos
Antineoplásicos/sangue , Mesilato de Imatinib/sangue , Análise Espectral Raman/métodos , Calibragem , Monitoramento de Medicamentos/métodos , Humanos , Análise dos Mínimos Quadrados , Limite de Detecção , Análise Multivariada , Reprodutibilidade dos Testes
17.
Integr Biol (Camb) ; 10(6): 356-363, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29756143

RESUMO

Raman hyperspectral imaging is an emerging practice in biological and biomedical research for label free analysis of tissues and cells. Using this method, both spatial distribution and spectral information of analyzed samples can be obtained. The current study reports the first Raman microspectroscopic characterisation of colon tissues from patients with Coeliac Disease (CD). The aim was to assess if Raman imaging coupled with hyperspectral multivariate image analysis is capable of detecting the alterations in the biochemical composition of intestinal tissues associated with CD. The analytical approach was based on a multi-step methodology: duodenal biopsies from healthy and coeliac patients were measured and processed with Multivariate Curve Resolution Alternating Least Squares (MCR-ALS). Based on the distribution maps and the pure spectra of the image constituents obtained from MCR-ALS, interesting biochemical differences between healthy and coeliac patients has been derived. Noticeably, a reduced distribution of complex lipids in the pericryptic space, and a different distribution and abundance of proteins rich in beta-sheet structures was found in CD patients. The output of the MCR-ALS analysis was then used as a starting point for two clustering algorithms (k-means clustering and hierarchical clustering methods). Both methods converged with similar results providing precise segmentation over multiple Raman images of studied tissues.


Assuntos
Biópsia/métodos , Doença Celíaca/diagnóstico , Processamento de Imagem Assistida por Computador/métodos , Intestinos/patologia , Pediatria/métodos , Análise Espectral Raman/métodos , Algoritmos , Doença Celíaca/metabolismo , Criança , Análise por Conglomerados , Humanos , Análise dos Mínimos Quadrados , Lipídeos/química , Análise Multivariada
18.
Dent Mater ; 33(8): 954-965, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28641745

RESUMO

OBJECTIVE: Separately addressing the fatigue resistance (ISO 14801, evaluation of final product) and aging behavior (ISO 13356, standardized sample) of oral implants made from yttria-stabilized zirconia proved to be insufficient in verifying their long-term stability, since (1) implant processing is known to significantly influence transformation kinetics and (2) aging, up from a certain level, is liable to decrease fatigue resistance. Therefore, the aim of this investigation was to apply a new testing protocol considering environmental conditions adequately inducing aging during dynamic fatigue. METHODS: Zirconia implants were dynamically loaded (107 cycles), hydrothermally aged (85°, 60 days) or subjected to both treatments simultaneously. Subsequent, monoclinic intensity ratios (Xm) were obtained by locally resolved X-ray microdiffraction (µ-XRD2). Transformation propagation was monitored at cross-sections by µ-Raman spectroscopy and scanning electron microscopy (SEM). Finally, implants were statically loaded to fracture. Linear regression models (fracture load) and mixed models (Xm) were used for statistical analyses. RESULTS: All treatments resulted in increased fracture load (p≤0.005), indicating the formation of transformation induced compressive stresses around surface defects during all treatment modalities. However, only hydrothermal and combinational treatment were found to increase Xm (p<0.001). No change in Xm was observed for solely dynamically loaded samples (p≥0.524). Depending on the variable observed, a monoclinic layer thickness of 1-2µm (SEM) or 6-8µm (Raman spectroscopy) was measured at surfaces exposed to water during treatments. SIGNIFICANCE: Hydrothermal aging was successfully induced during dynamic fatigue. Therefore, the presented setup might serve as reference protocol for ensuring pre-clinically long-term reliability of zirconia oral implants.


Assuntos
Implantes Dentários , Teste de Materiais , Zircônio , Cinética , Microscopia Eletrônica de Varredura , Reprodutibilidade dos Testes , Estresse Mecânico , Propriedades de Superfície , Difração de Raios X
19.
Biosensors (Basel) ; 6(3)2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27657146

RESUMO

Surface-Enhanced Raman Spectroscopy (SERS) is a label-free technique that enables quick monitoring of substances at low concentrations in biological matrices. These advantages make it an attractive tool for the development of point-of-care tests suitable for Therapeutic Drug Monitoring (TDM) of drugs with a narrow therapeutic window, such as chemotherapeutic drugs, immunosuppressants, and various anticonvulsants. In this article, the current applications of SERS in the field of TDM for cancer therapy are discussed in detail and illustrated according to the different strategies and substrates. In particular, future perspectives are provided and special concerns regarding the standardization of self-assembly methods and nanofabrication procedures, quality assurance, and technology readiness are critically evaluated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...